

12 May 2021

McCloy Group Pty Ltd PO Box 2214 Dangar NSW 2309

Attention: Mr Sam Rowe

Dear Sam,

RE: 107 HAUSSMAN DRIVE, THORNTON NSW SURFACE WATER & SEDIMENT ASSESSMENT

1 INTRODUCTION

Qualtest Laboratory NSW Pty Ltd (Qualtest) is pleased to present the findings of the surface water and sediment assessment for the site located at 107 Haussman Drive, Thornton NSW (the Site).

Qualtest previously carried out a Preliminary Contamination Assessment (PCA) for the site in 2017 (Ref: NEW17P-0074-AB, dated 29 June 2017). The PCA identified ponds/dams on the site, and recommended that sampling and analysis of the water and sediment in the dams be carried out.

The PCA was submitted to Maitland City Council (MCC) as part of a re-zoning application for the site. Council have subsequently requested that the sampling and analysis recommended in the PCA is completed.

This letter provides the results of the sampling and analysis of surface water and sediment.

2 OBJECTIVES

The objective of the assessment is to assess:

- Whether the surface water and sediments in the dams pose a risk to human health or the environment; and,
- If the surface water and sediments are suitable for re-use/irrigation on site, if the dams are proposed to be backfilled.

3 SCOPE OF WORKS

In order to meet the above objectives, the following scope of works was carried out:

- Collection of surface water and sediment samples;
- Laboratory analysis of samples; and
- Data assessment and preparation of this letter report.

4 FIELD WORK

Field work was carried out on 5 May 2021. At the time of the fieldwork, three dams were observed:

- Dam 1 located in the central eastern portion of the site. Contained water at the time of sampling;
- Dam 2 located in the central eastern portion of the site (north of Dam 1). Dry at the time of sampling.

A surface water sample and a sediment sample were collected from Dam 1, and field water quality parameters were recorded. Dam 2 was not accessible, and therefore no sediment sample was collected.

Sediment samples were collected by hand from the edge of the dam, and surface water samples were collected using a dedicated disposable plastic bailer. The samples were placed directly into laboratory supplied jars and bottles with appropriate preservatives for the analysis. Each sample was placed directly into an ice-chilled esky and remained chilled during transportation to the laboratory.

Figure 1, attached, shows the sampling locations. Photographs of the dams are presented below.

5 ANALYTICAL SUITE

The samples were dispatched to NATA-accredited laboratory, Eurofins MGT. The samples were analysed for:

- Heavy Metals (arsenic, cadmium, chromium, copper, lead, nickel, zinc and mercury);
- Total Recoverable Hydrocarbons (TRH);
- Benzene, Toluene, Ethylbenzene, Xylenes (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAH);
- Organochlorine Pesticides (OCP);
- Suspended Soils water sample only; and
- pH and Electrical Conductivity.

6 ASSESSMENT CRITERIA

6.2 Sediment

The health and ecological investigation levels for soil, presented in the National Environment Protection (Assessment of Site Contamination) Measure 1999 (April 2013), NEPC 2013, Canberra (referred to as ASC NEPM 2013) are generally used in NSW when selecting investigation levels for chemical contaminants in soil. The purpose of the ASC NEPM (2013) is to 'establish a nationally consistent approach to the assessment of site contamination to ensure sound environmental management practices by the community which includes regulators, site assessors, environmental auditors, landowners, developers and industry'.

ASC NEPM (2013) provides health and ecological investigation and screening levels for different exposure scenarios based on a proposed land use. Health and ecological investigation and screening levels are applicable to the first stage (Tier 1) of site assessment and are used to assist in the iterative development of a Conceptual Site Model (CSM). They are adopted as concentrations of a contaminant above which either further appropriate investigation and/or evaluation will be required, or development of an appropriate management strategy (including remediation).

Health Investigation Levels (HILs) and Health Screening levels (HSLs) are applicable for assessing human health risk via relevant exposure pathways.

The HILs were developed for a broad range of metals and organic substances. These are generic to all soil types.

The HSLs have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via inhalation and direct contact with soil and groundwater. The HSLs depend on specific soil physicochemical properties, building configurations, land use scenarios and the depth that groundwater is encountered.

Ecological Investigation Levels (EILs) and Ecological Screening Levels (ESLs) are applicable for assessing risk to terrestrial ecosystems under residential, open space and commercial/industrial land use scenarios. They apply to the top 2m of soil, which corresponds to the root zone and habitation zone of many species.

The EILs are associated with selected metals and organic compounds. The EILs are site specific and are determined by calculating an Ambient Background Concentration (ABC) and an Added Contaminant Limit (ACL) for the site, which are added together to get the EIL. The EIL's for the site have been calculated using site specific pH, Cation Exchange Capacity (CEC) and clay content values.

The ESLs are associated with petroleum compounds and fractions and are dependent on specific soil physical properties (i.e. coarse and fine-grained soil).

As the proposed development is residential, the investigation levels for HIL/HSL A and EILs/ESLs for urban residential / public open space are considered applicable for the site.

6.1 Surface Water

For assessing surface water quality, it is first necessary to assess the beneficial uses of surface water for the site and down gradient of the investigation area being assessed. Potential beneficial uses are considered to include:

- Aquatic ecosystems discharge of the dams offsite to the east to an unnamed creek located about 50m east of the eastern site boundary. The unnamed creek is anticipated to sustain freshwater ecosystem; and
- Irrigation irrigation of the water over the site, if the dams are proposed to be backfilled.

Given the above, the potential beneficial use of surface water is considered to be sustaining aquatic ecosystems, and irrigation.

The applicable guidelines are:

- ANZECC (2000) Australian and New Zealand Guidelines on Fresh and Marine Water Quality (Primary Industries Irrigation); and,
- ANZG (2018) Australian and New Zealand Guidelines on Fresh and Marine Water Quality.

The Default Guideline Values (DGVs) for freshwater species presented in the ANZG (2018) are considered applicable for the protection of aquatic ecosystems of the receiving waters, as overflow from the onsite dams would discharge to freshwater bodies.

ASC NEPM (2013) has adopted the trigger values for the protection of 95% of aquatic ecosystems, except where contaminants are potentially bio-accumulative in which case the trigger values for protection of 99% of species are used.

7 QUALITY ASSURANCE / QUALITY CONTOL

In order to assess field quality assurance / quality control (QA/QC) procedures, one duplicate sample (D-9.4.21), was collected and analysed with primary surface water sample DAM1. The results of the field duplicate sampling are presented in Table LR3 (attached). The RPDs were within the acceptable limit (30%), with the exception of conductivity (56%). This RPD is not considered to affect the data usability as the higher conductivity was reported for the primary sample, and was below the adopted criteria. It is noted that low concentrations exaggerate the percentage differences with respect to small total concentrations, therefore where results for primary and duplicate sample were less than 10 times the LOR, the RPDs have been disregarded.

The laboratory conducted internal quality control using laboratory duplicates, spikes and method blanks. The laboratory internal quality control showed method blank results were recorded below the laboratory limit of reporting, and spike recoveries within control limits. Laboratory duplicates were within laboratory acceptable limits, except for zinc. The laboratory quoted code Q15 which states "The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.". Based on this the RPD is not considered to affect the data usability.

Based on the review of the QA/QC data, it is considered that the results are likely to be representative of conditions at the sampling locations at the time of sampling and are suitable for use in this assessment.

8 RESULTS

8.1 Surface water Field Quality Parameters

The surface quality parameters are summarised in Table 8.1 below.

Table 8.1 –Surface Water Quality Parameters

Sample Location	DAM 1
Electrical conductivity (µS/cm)	151.1
рН	6.66
Temperature (°C)	15.6
Redox Potential (mV)	61.4
Comments	Brown tinge, no odour

8.2 Laboratory Results

The laboratory results are presented in Table LR1 and LR2 (attached). The laboratory reports are also attached.

The sediment laboratory results were compared to the criteria, as outlined in Section 6.1 above. The results showed:

- Concentrations of metals, PAH's, BTEX, TRH and OCP's were below the adopted criteria;
- pH shows the sediments are neutral; and
- Conductivity shows the sediments are not saline.

The surface water laboratory results were compared to the criteria, as outlined in Section 6.2 above. The results showed:

- Concentrations of chromium were above the adopted criteria for protection of aquatic ecosystems (0.001mg/L) in sample DAM1 (0.003mg/L);
- Concentrations of copper were above the adopted criteria for protection of aquatic ecosystems (0.0014mg/L) in sample DAM1 (0.003mg/L); and,
- Concentrations of zinc were above the adopted criteria for protection of aquatic ecosystems (0.008mg/L) in sample DAM1 (0.026mg/L).

9 CONCLUSIONS

The laboratory results showed that the sediment was suitable for onsite reuse from a contamination perspective.

The surface water contained concentrations of metals (chromium, copper and zinc) above the trigger values for protection of aquatic ecosystems. Adopting the aquatic ecosystem guidelines for onsite surface water is a conservative approach, as the DGVs apply to the receiving waters. No data is available for the receiving waters (unnamed creek located 50m east of the sites eastern boundary). In addition, the surface water would only discharge to the unnamed creek during periods of high rainfall causing overflow. Based on this it is considered that the slightly elevated metals in the surface water are unlikely to have an adverse environmental impact on the unnamed creek, and therefore does not warrant remediation.

The surface water is also suitable for irrigation onsite, should the dam require dewatering for backfilling.

10 LIMITATIONS

The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted practices and standards. To our knowledge, they represent a reasonable interpretation of the general conditions of the site.

Data and opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement by Qualtest. If this report is reproduced, it must be in full.

If you have any further questions regarding this report, please do not hesitate to contact the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd.

Emma Coleman Senior Environmental Scientist

Attachments:

Figure 1 – Site Location Plan Figure 2 - Sample Location Plan Table LR1 – Sediment Analytical Results Table LR2 – Surface Water Analytical Results Table LR3 – Quality Control Results Laboratory Reports

🚺	Client:	MCCLOY GROUP PTY LTD	Drawing No:	FIGURE 2
	Project:	SURFACE WATER & SEDIMENT ASSESSMENT	Project No:	NEW17P-0074A
UULIUSI	Location:	107 HAUSSMAN DRIVE THORNTON NSW	Scale:	N.T.S.
LABORATORY (NSW) PTY LTD	Title:	SAMPLE LOCATION PLAN	Date:	11 MAY 2021

					Field ID	DAM1SD
					Date	3/05/2021
Analytes		Units	LOR	HIL-A ^{1,2}	EIL A/ESL A ³	
	Arsenic	mg/kg	2	100	100	5.7
	Cadmium	mg/kg	0.4	20		< 0.4
	Chromium	mg/kg	5	100	410*	< 5
Metals	Copper	mg/kg	5	6000	220*	< 5
	Lead	mg/kg	5	300	1100	13
	Mercury	mg/kg	5	40		< 0.1
	Nickel	mg/kg	5	400	170*	< 5
	Zinc	mg/kg	5	7400	520*	17
pH & EC	pH (1:5 Aqueous extract)	ph units	0.1			6.2
p	Conductivity	uS/cm	0.05			32
	Acenaphthene	mg/kg	0.5			< 0.5
	Acenaphthylene	mg/kg	0.5			< 0.5
	Anthracene	mg/kg	0.5			< 0.5
	Benz(a)anthracene	mg/kg	0.5			< 0.5
	Benzo(a)pyrene	mg/kg	0.5		0.7	< 0.5
	Benzo(a)pyrene TEQ	mg/kg	0.6	3		0.6
	Benzo(b&j)fluoranthene	mg/kg	0.5			< 0.5
	Benzo(g.h.i)perylene	mg/kg	0.5			< 0.5
PAHs	Benzo(k)fluoranthene	mg/kg	0.5			< 0.5
PARS	Chrysene	mg/kg	0.5			< 0.5
	Dibenz(a.h)anthracene	mg/kg	0.5			< 0.5
	Fluoranthene	mg/kg	0.5			< 0.5
	Fluorene	mg/kg	0.5			< 0.5
	Indeno(1.2.3-cd)pyrene	mg/kg	0.5			< 0.5
	Naphthalene	mg/kg	0.5		170	< 0.5
	Phenanthrene	mg/kg	0.5			< 0.5
	Pyrene	mg/kg	0.5			< 0.5
	Total PAH	mg/kg	0.5	300		< 0.5
	Benzene	mg/kg	0.1	0.7	50	< 0.1
	Ethylbenzene	mg/kg	0.1	NL	70	< 0.1
BTEX	Toluene	mg/kg	0.1	480	85	<0.1
	Xylenes	mg/kg	0.3	110	105	<0.3
	Naphthalene	mg/kg	0.5	5	170	<0.5
	TRH C6-C10	mg/kg	20	<u> </u>	180	<20
	TRH C6-C10 less BTEX (F1)	mg/kg	20	50	100	<20
	TRH >C10-C16	mg/kg	50	50	120	<50
TRH	TRH >C10-C16 less Naphthalene (F2)	mg/kg	50	280	120	<50
	TRH >C16-C34	mg/kg	100	200	300	<100
	TRH >C16-C34 (silica Gel)		100		500	<100
	TRH >C34-C40	mg/kg mg/kg	100		2800	<100
					2800	
	4.4'-DDD 4.4'-DDE	mg/kg	0.05	240		< 0.05
		mg/kg		240	190	
	4.4'-DDT	mg/kg	0.05		180	< 0.05
	a-BHC	mg/kg	0.05			< 0.05
	Aldrin	mg/kg	0.05	6		< 0.05
	Dieldrin	mg/kg	0.05			< 0.05
	b-BHC Chlordonos, Total	mg/kg	0.05	50		< 0.05
	Chlordanes - Total	mg/kg	0.1	50		< 0.1
	d-BHC	mg/kg	0.05			< 0.05
000-	Endosulfan I	mg/kg	0.05	270		< 0.05
OCPs	Endosulfan II	mg/kg	0.05			< 0.05
	Endosulfan sulphate	mg/kg	0.05			< 0.05
	Endrin	mg/kg	0.05	10		< 0.05
	Endrin aldehyde	mg/kg	0.05			< 0.05
	Endrin ketone	mg/kg	0.05			< 0.05
	g-BHC (Lindane)	mg/kg	0.05			< 0.05
	Heptachlor	mg/kg	0.05	6		< 0.05
	Heptachlor epoxide	mg/kg	0.05			< 0.05
	Hexachlorobenzene	mg/kg	0.05			< 0.05
	Methoxychlor	mg/kg	0.05	300		< 0.2
	Toxaphene	mg/kg	1	20		< 0.1

Notes *

EIL based on pH of 6.2, CEC of 10meq/100ml, and clay content >10%. Non Limiting

NL <mark>Result</mark> Result

Concentration exceeds adopted human health critieria (residential)

Concentration exceeds adopted ecological investigation levels - Residential

1 ASC NEPM (2013) Health Investigation Levels (Residential)

2 ASC NEPM (2013) Health Screening Levels (Residential, Clay 0-1m)

3 ASC NEPM (2013) Ecological Investigation and Screening Levels (Residential, clays)

TableLR2: Surface Water Analytical Results 107 Haussman Drive, Thornton NSW

					Field ID	DAM1
				Aquatic	Date	3.05.21
nalytes		Units	LOR	Ecosystem ¹	Irrigation ²	
	pH (1:5 Aqueous extract)	ph units	0.1	6.5-8.0*		6.8
pH& TSS	Conductivity	uS/cm	10	125-2200		230
•	Total Suspended Solids	mg/L	5			12
	Arsenic	mg/L	5	0.013	20	0.005
	Cadmium	mg/L	0.1	0.0002	0.05	< 0.0002
	Chromium	mg/L	0.05	0.001	1	0.003
Metals	Copper	mg/L	0.5	0.0014	5	0.003
wetais	Lead	mg/L	0.001	0.0034	5	0.005
	Mercury	mg/L	0.001	0.00006	0.002	< 0.0001
	Nickel	mg/L	0.001	0.011	2	0.002
	Zinc	mg/L	0.005	0.008	5	0.026
	4.4'-DDD	mg/L	0.0001			< 0.0001
	4.4'-DDE	mg/L	0.0001			< 0.0001
	4.4'-DDT	mg/L	0.0001	0.006		< 0.0001
	a-BHC	mg/L	0.0001			< 0.0001
	Aldrin	mg/L	0.0001			< 0.0001
	Dieldrin	mg/L	0.0001			< 0.0001
	b-BHC	mg/L	0.0001			< 0.0001
	Chlordanes - Total	mg/L	0.001	0.03		< 0.002
	d-BHC	mg/L	0.0001			< 0.0001
0.00	Endosulfan I	mg/L	0.0001	0.03	-	< 0.0001
OCP	Endosulfan II	mg/L	0.0001			< 0.0001
	Endosulfan sulphate	mg/L	0.0001	0.01		< 0.0001
	Endrin Endrin aldehyde	mg/L	0.0001	0.01		< 0.0001
	Endrin ketone	mg/L	0.0001			< 0.0001
	g-BHC (Lindane)	mg/L mg/L	0.0001	0.2		< 0.0001
	Heptachlor	mg/L	0.0001	0.01		< 0.0001
	Heptachlor epoxide	mg/L	0.0001	0.01		< 0.0001
	Hexachlorobenzene	mg/L	0.0001			< 0.0001
	Methoxychlor	mg/L	0.0001			< 0.0002
	Toxaphene	mg/L	0.01	0.1		< 0.001
	Benzene	mg/L	0.001	0.95		< 0.001
	Tolune	mg/L	0.001	0.180**		< 0.001
BTEX	Ethylbenzene	mg/L	0.001	0.080**		< 0.001
	Xylenes	mg/L	0.003	0.075**		< 0.003
	Naphthalene	mg/L	0.01			< 0.01
	TRH C6-C10	mg/L	0.02			< 0.02
	TRH C6-C10 less BTEX (F1)	mg/L	0.02			< 0.02
TRH	TRH >C10-C16	mg/L	0.05			< 0.05
	TRH >C10-C16 less Naphthalene	mg/L	0.05			< 0.05
	TRH >C16-C34	mg/L	0.1			< 0.1
	TRH >C34-C40	mg/L	0.1			< 0.1
	Acenaphthene	mg/L	0.001			< 0.001
	Acenaphthylene	mg/L	0.001			< 0.001
	Anthracene	mg/L	0.001	0.00001**		< 0.001
	Benz(a)anthracene	mg/L	0.001			< 0.001
	Benzo(a)pyrene	mg/L	0.001	0.0001**		< 0.001
	Benzo(b&j)fluoranthene	mg/L	0.001			< 0.001
	Benzo(g.h.i)perylene	mg/L	0.001			< 0.001
DAU	Benzo(k)fluoranthene	mg/L	0.001			< 0.001
PAHs	Chrysene	mg/L	0.001			< 0.001
	Dibenz(a.h)anthracene	mg/L	0.001			< 0.001
	Fluoranthene	mg/L	0.001			< 0.001
	Fluorene	mg/L	0.001			< 0.001
	Indeno(1.2.3-cd)pyrene	mg/L	0.001	0.016		< 0.001
	Naphthalene	mg/L	0.001	0.016		< 0.001
	Phenanthrene	mg/L	0.001			< 0.001
	Pyrene Total PAH	mg/L mg/L	0.001			< 0.001
		iiig/ L	0.001			< 0.001

Result Result Italics

Concentration exceeds the Protection of 95-99% of species in Freshwater trigger values Concentration exceeds the Irrigation trigger values

LOR exceeds adopted criteria

^ Bio accumulative contaminants – 99% protection level

* Criteria from ANZECC (2000) Table 3.3.2, South-east Australia, Freshwater lakes and reservoirs

** Low reliability criteria

a. Conservatively assumes xylene is p-xylene.

1

ANZG (2018) Australian and New Zealand Guidelines on Fresh and Marine Water Quality - Default Guideline Values

2 ANZECC (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Primary Industries -

Irrigation

Table LR3- Quality Control Results 107 Haussman Drive Thornton NSW

			Sample ID	DAM1	D3.5.21	
			Date	3/05/2021	3/05/2021	RPD%
			Туре	Primary	Duplicate	
	Analytes	Units	LOR			
	pH (1:5 Aqueous extract)	ph units	0.1	6.6	6.7	2
pH& TSS	Conductivity	uS/cm	10	230	130	56
	Arsenic	mg/L	<0.001	0.005	0.006	18
	Cadmium	mg/L	< 0.0002	< 0.0002	< 0.0002	0
	Chromium	mg/L	< 0.001	0.003	0.003	0
	Copper	mg/L	< 0.001	0.003	0.003	0
Metals	Lead	mg/L	< 0.001	0.005	0.004	22
	Mercury	mg/L	< 0.0001	< 0.0001	< 0.0001	0
	Nickel	mg/L	< 0.001	0.002	0.003	40
	Zinc	mg/L	0.005	0.026	0.023	12
	Benzene	mg/L	0.001	< 0.001	< 0.001	0
	Tolune	mg/L	0.001	< 0.001	< 0.001	0
BTEX	Ethylbenzene	mg/L	0.001	< 0.001	< 0.001	0
	Xylenes	mg/L	0.003	< 0.003	< 0.003	0
	Naphthalene	mg/L	0.01	< 0.01	< 0.01	0
	TRH C6-C10	mg/L	0.02	< 0.02	< 0.02	0
TRH	TRH C6-C10 less BTEX (F1)	mg/L	0.02	< 0.02	< 0.02	0
	TRH >C10-C16	mg/L	0.05	< 0.05	< 0.05	0
	TRH >C10-C16 less Naphthale	mg/L	0.05	< 0.05	< 0.05	0
	TRH >C16-C34	mg/L	0.1	< 0.1	< 0.1	0
	TRH >C34-C40	mg/L	0.1	< 0.1	< 0.1	0
	Acenaphthene	mg/L	0.001	< 0.001	< 0.001	0
	Acenaphthylene	mg/L	0.001	< 0.001	< 0.001	0
	Anthracene	mg/L	0.001	< 0.001	< 0.001	0
	Benz(a)anthracene	mg/L	0.001	< 0.001	< 0.005	0
	Benzo(a)pyrene	mg/L	0.001	< 0.001	< 0.005	0
	Benzo(b&j)fluoranthene	mg/L	0.001	< 0.001	< 0.005	0
	Benzo(g.h.i)perylene	mg/L	0.001	< 0.001	< 0.005	0
	Benzo(k)fluoranthene	mg/L	0.001	< 0.001	< 0.005	0
PAHs	Chrysene	mg/L	0.001	< 0.001	< 0.005	0
	Dibenz(a.h)anthracene	mg/L	0.001	< 0.001	< 0.005	0
	Fluoranthene	mg/L	0.001	< 0.001	< 0.001	0
	Fluorene	mg/L	0.001	< 0.001	< 0.001	0
	Indeno(1.2.3-cd)pyrene	mg/L	0.001	< 0.001	< 0.005	0
	Naphthalene	mg/L	0.001	< 0.001	< 0.001	0
	Phenanthrene	mg/L	0.001	< 0.001	< 0.001	0
	Pyrene	mg/L	0.001	< 0.001	< 0.001	0
	Total PAH	mg/L	0.001	< 0.001	< 0.005	0

Notes:

*RPDs have only been considered where a concentration is greater than 10 times the EQL.

**High RPDs are in bold (Acceptable RPD range is 30% (>10 x EQL))

Optimize Contrision Contrisio		HAIN OF CUS1 Eurofins Environment Test	CHAIN OF CUSTODY RECORD Eurofine Tealing ABN 50 005 055 521		Sydney Laboratory	atory Vina Kenn L Enviro Sumption	and Tays Mine NEW	Maint Cover Sover Miner MiRW 2019 40mm/26/42/40344404mercom		Brisbane Laboratory Unit 1 21 Invaluence Inte or 1002 (5001 - Essence	Y the Minne 201472 Minne 2014	D 41/2	Per	Perth Laboratory Lint 2.91 Learn Hymmy Ametair WA (105 See one action of a section American	ettan Weld Vol-	16		<u></u>	Malbou I North	Malbourne Laboratory R Montelig Risol D Instead	tiory strengt doubt 902-3175	
Interference Exercision Exerc	Company	Qualtest		Projes	THE P	NEW17P-C	074			Project	Kanager	Emma Colem				anplarfe		Step	n Cullen	2005	10.5 stryes 9 and an ability and	
Bit Control Section	Address	8 Ironbark Close Wara	abrook NSW 2304	Project		McCloy GI	oup Tho	nton		EDD P EBdat E	ormat Duid ele	Excel			- A	ided over	h,					
Control Control <t< td=""><td></td><td></td><td></td><td>."boxali</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ema</td><td>il for Inv</td><td>roice</td><td>aco</td><td>ounts</td><td>Qqualte</td><td>sst.com.au</td><td>I</td></t<>				."boxali											Ema	il for Inv	roice	aco	ounts	Qqualte	sst.com.au	I
And the second of the	Contact Name	Emma Coleman		Ducod (<u>31</u> 1 13. in Uitio											Eme	il her Rea	ulte	libbyb steph	etz@qua cullen@o	ttest.com.ai	u emmacoleman@qualtest.cr t.att bilbearow@rusteet.com	om.au
Market Status Markt Status Market Status Market St	Phome Ne			1%; 294481 0 , Aystrola et 901											5	timpa tent	Contail Contail	tiers A alon 4 ne	Vincelo	8	quired Turmaround Time (Default will be 5 days 1 not box	ሻለክ 4
2 3	Special Directions			evtersA novi pribanjo popu od bam	IB HA9 ,X3			C 1.													vemight (reporting by 9am	- Asthe
20000 Vote X<	Purchase Order			n ma akana reboo 3114	та (нят)			\sim								-			(эаан		÷	
Statisti (montioni statisti (monti statisti (montioni statisti (montioni statisti (mo	Quote ID Na	180622QUAN-1		т ансул															To ssale	0	(andard)	
3021 Wate X <thx< th=""> X<!--</td--><td></td><td>Client Sample ID</td><td>Sampled Date/Time cómm/y Norm</td><td>Matrix Solid (3) Weater (17)</td><td>5</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>D) asl</td><td></td><td>Bample Comments Defoue Goods Hazard We</td><td>guima</td></thx<>		Client Sample ID	Sampled Date/Time cómm/y Norm	Matrix Solid (3) Weater (17)	5					•									D) asl		Bample Comments Defoue Goods Hazard We	guima
3621 Wate X X 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>		DAM1	3/05/21	Water				1									_	~				
3521 Sodinant X <th< td=""><td>2</td><td>D3.5.21</td><td>3/5/21</td><td>Water</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td><td></td><td></td><td></td><td></td></th<>	2	D3.5.21	3/5/21	Water													_	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Bit 1	m	DAM1 SD	315/21	Sediment	+		\times									_			~			
By Son lower intervention Son lower interventio	4																					
By Mail Signate Signate <td< td=""><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>*</td><td></td></td<>	2																				*	
By 1 1 1 1 1 1 1 1 By 1 1 1 1 1 1 1 1 1 1 By 1<	10					1												-	-			
Image: Signature Signatur	7			_		I													_			
Idditions 3 3 1 1 2 2 4 1 Idditions 3 3 1 1 1 1 2 2 4 1 1 Idditions 3 3 1 1 1 1 2 2 2 4 1 1 Idditions 1 1 1 1 1 1 2 2 2 4 1 <th1< th=""></th1<>																						
Total Counts 3 3 1 1 1 2 2 4 1 b Image: Signature in the state	03 44																					
By I hand Defineted Postal Name Signature Signature Date Time Time By Ev sv0 i BNE i MEL i PER i ADL i ML) DRW Signature bit 3/5/2/1 Time Zev Temperature By sv0 i BNE i MEL i PER i ADL i ML, DRW Signature Date 3/5/2/1 Time Zev Temperature	2	A State	Tetal Co	Aunts											2				*			100
By Entry Styl Bite MEL PER ADL NTL DRW Signature Date 3/5/1/ Time Zen Temperature By SYD BNE MEL PER ADL NTL DRW Signature Signature Date 3/5/1/ Time Zen Report Ne				and Delivered		Postal	2	ame				Signature		-		Date				F	ime	
By syd BNE MEL PER ADL NTL DRW Signature Data Time Report Ne	Laboratory Use Only	Received By	Erma		SYD BNE A	AEL PER	N I YOU	TL DORW	Signature	be	1	-	Date	3/5/21		Time	M	5		Temp		
		Received By			SYD BNE M	AEL PER	ADL N	TL DRW	Signature				Date			Time				Rep		20

-

🛟 eurofi	nc			Australia											New Zealand	
ç, curon		ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 5000 NATA # 1261	U 175 1 0 L	ydney Init F3, E 6 Mars I ane Cov hone : +	Road ve West	t NSW 2	1/ M 2066 P		Illwood QLD 41 61 7 39		Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 4 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 50 005 085 521 web:	www.eurofins.com.au	ı email: EnviroSale	es@eurofins.com	Site # 1254 & 14271		ATA # 1							Site # 23736	NATA # 1261 Site # 25079		
Company Name: Address:	Qualtest 2 Murray Dw Mayfield We NSW 2304					Re Pl	rder I eport hone: ax:	#:	(79228)2 496)2 496	8 446			Received: Due: Priority: Contact Name:	May 3, 2021 3:00 F May 10, 2021 5 Day Emma Coleman	PM
Project Name: Project ID:	MCCLOY GI NEW17P-00	ROUP THORN 74	NTON											Eurofins Analytical S	ervices Manager : Aı	ndrew Black
	Sa	mple Detail			Conductivity (1:5 aqueous extract at 25°C as rec.)	Conductivity (at 25°C)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (at 25 °C)	Total Suspended Solids Dried at 103–105°C	Organochlorine Pesticides	Moisture Set	Eurofins Suite B7				
Melbourne Laborato			271													
Sydney Laboratory					X	X	Х	X	X	X	X	X				
Brisbane Laboratory																
Perth Laboratory - N																
Mayfield Laboratory External Laboratory		23079					+									
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1 DAM1	May 03, 2021		Water	S21-My04152		X		х	х	х		х				
2 D3.5.21	May 03, 2021		Water	S21-My04153		Х		Х				Х				
	May 03, 2021		Sediment	S21-My04154	Х		Х			Х	х	Х				
Test Counts					1	2	1	2	1	2	1	3				

Qualtest 2 Murray Dwyer Circuit Mayfield West NSW 2304

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:

Emma Coleman

Report Project name Project ID Received Date **792281-S** MCCLOY GROUP THORNTON NEW17P-0074 May 03, 2021

Client Sample ID			DAM1 SD
Sample Matrix			Sediment
Eurofins Sample No.			S21-My04154
•			1
Date Sampled			May 03, 2021
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons - 1999 NEPM F			
TRH C6-C9	20	mg/kg	< 20
TRH C10-C14	20	mg/kg	< 20
TRH C15-C28	50	mg/kg	< 50
TRH C29-C36	50	mg/kg	< 50
TRH C10-C36 (Total)	50	mg/kg	< 50
BTEX		<u> </u>	
Benzene	0.1	mg/kg	< 0.1
Toluene	0.1	mg/kg	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2
o-Xylene	0.1	mg/kg	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3
4-Bromofluorobenzene (surr.)	1	%	58
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions	1	
Naphthalene ^{N02}	0.5	mg/kg	< 0.5
TRH C6-C10	20	mg/kg	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20
TRH >C10-C16	50	mg/kg	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50
TRH >C16-C34	100	mg/kg	< 100
TRH >C34-C40	100	mg/kg	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100
Polycyclic Aromatic Hydrocarbons			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2
Acenaphthene	0.5	mg/kg	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5
Anthracene	0.5	mg/kg	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5
Chrysene	0.5	mg/kg	< 0.5

Oliant Comple ID			D.4.4.65
Client Sample ID			DAM1 SD
Sample Matrix			Sediment
Eurofins Sample No.			S21-My04154
Date Sampled			May 03, 2021
Test/Reference	LOR	Unit	
Polycyclic Aromatic Hydrocarbons			
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5
Fluorene	0.5	mg/kg	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5
Naphthalene	0.5	mg/kg	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5
Pyrene	0.5	mg/kg	< 0.5
Total PAH*	0.5	mg/kg	< 0.5
2-Fluorobiphenyl (surr.)	1	%	95
p-Terphenyl-d14 (surr.)	1	%	99
Organochlorine Pesticides		_	
Chlordanes - Total	0.1	mg/kg	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05
a-BHC	0.05	mg/kg	< 0.05
Aldrin	0.05	mg/kg	< 0.05
b-BHC	0.05	mg/kg	< 0.05
d-BHC	0.05	mg/kg	< 0.05
Dieldrin	0.05	mg/kg	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05
Endrin	0.05	mg/kg	< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05
Endrin ketone	0.05	mg/kg	< 0.05
g-BHC (Lindane)	0.05	mg/kg	< 0.05
Heptachlor	0.05	mg/kg	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05
Methoxychlor	0.2	mg/kg	< 0.2
Toxaphene	0.1	mg/kg	< 0.1
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	< 0.2
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.2
Dibutylchlorendate (surr.)	1	%	102
Tetrachloro-m-xylene (surr.)	1	%	94
Conductivity (1:5 aqueous extract at 25°C as rec.)	10	uS/cm	32
pH (1:5 Aqueous extract at 25°C as rec.)	0.1	pH Units	6.2
% Moisture	1	%	25
Heavy Metals			
Arsenic	2	mg/kg	5.7
Cadmium	0.4	mg/kg	< 0.4
Chromium	5	mg/kg	< 5
Copper	5	mg/kg	< 5
Lead	5	mg/kg	13
Mercury	0.1	mg/kg	< 0.1

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			DAM1 SD Sediment S21-My04154 May 03, 2021
Test/Reference	LOR	Unit	
Heavy Metals			
Nickel	5	mg/kg	< 5
Zinc	5	mg/kg	17

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	May 06, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	May 06, 2021	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Conductivity (1:5 aqueous extract at 25°C as rec.)	Sydney	May 06, 2021	7 Days
- Method: LTM-INO-4030 Conductivity			
pH (1:5 Aqueous extract at 25°C as rec.)	Sydney	May 06, 2021	7 Days
- Method: LTM-GEN-7090 pH in soil by ISE			
% Moisture	Sydney	May 04, 2021	14 Days
- Method: LTM-GEN-7080 Moisture			

🛟 eurofi	ns			Australia											New Zealand	
		ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261	U 175 10 0 La	Mars F ane Cov	e West		1/ M 066 P	lurarrie hone : -	allwood QLD 41 +61 7 39		Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 50 005 085 521 web:	www.eurofins.com.au	email: EnviroSale	s@eurofins.com	Site # 1254 & 14271				e # 182			1201 01	5 # 20134	Site # 23736	NATA # 1261 Site # 25079		MNZ # 1250
Company Name: Address:	Qualtest 2 Murray Dw Mayfield We NSW 2304	•				Re Pl	rder N eport none: ax:	#:	(1 68 446 60 977			Received: Due: Priority: Contact Name:	May 3, 2021 3:00 F May 10, 2021 5 Day Emma Coleman	PM
Project Name: Project ID:	MCCLOY GI NEW17P-00	ROUP THORN 74	ITON											Eurofins Analytical S	ervices Manager : Ar	ndrew Black
	Sa	mple Detail			Conductivity (1:5 aqueous extract at 25°C as rec.)	Conductivity (at 25°C)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (at 25 °C)	Total Suspended Solids Dried at 103–105°C	Organochlorine Pesticides	Moisture Set	Eurofins Suite B7				
Melbourne Laborato			71													
Sydney Laboratory Brisbane Laborator					X	X	X	X	X	X	X	X				
Perth Laboratory - N	•															
Mayfield Laboratory																
External Laboratory																
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1 DAM1	May 03, 2021		Water	S21-My04152		Х		Х	Х	Х		Х				
2 D3.5.21	May 03, 2021		Water	S21-My04153		Х		Х				х				
3 DAM1 SD	May 03, 2021		Sediment	S21-My04154	Х		Х			Х	Х	Х				
Test Counts					1	2	1	2	1	2	1	3				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fraction	าร				
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total*	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fraction	าร				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank		1100		1 400	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	iiig/kg	< 0.5	0.0	1 433	
Organochlorine Pesticides					
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4-DDT	mg/kg	< 0.05	0.05	Pass	
a-BHC	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
b-BHC	mg/kg	< 0.05	0.05	Pass	
d-BHC	mg/kg	< 0.05	0.05	Pass	
Dieldrin Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg mg/kg	< 0.05 < 0.05	0.05	Pass Pass	

Test	Units	Result 1	Accept Limi	ance Pass ts Limits	Qualifying Code
Endosulfan sulphate	mg/kg	< 0.05	0.0	5 Pass	
Endrin	mg/kg	< 0.05	0.0	5 Pass	
Endrin aldehyde	mg/kg	< 0.05	0.0	5 Pass	
Endrin ketone	mg/kg	< 0.05	0.0	5 Pass	
g-BHC (Lindane)	mg/kg	< 0.05	0.0	5 Pass	
Heptachlor	mg/kg	< 0.05	0.0	5 Pass	
Heptachlor epoxide	mg/kg	< 0.05	0.0	5 Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.0	5 Pass	
Methoxychlor	mg/kg	< 0.2	0.2	Pass	
Toxaphene	mg/kg	< 0.1	0.1	Pass	
Method Blank		-			
Conductivity (1:5 aqueous extract at 25°C as rec.)	uS/cm	< 10	10	Pass	
Method Blank					
Heavy Metals					
Arsenic	mg/kg	< 2	2	Pass	
Cadmium	mg/kg	< 0.4	0.4	Pass	
Chromium	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	-
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	%	86	70-1	30 Pass	
TRH C10-C14	%	117	70-1		
LCS - % Recovery					
BTEX					
Benzene	%	95	70-1	30 Pass	
Toluene	%	96	70-1		
Ethylbenzene	%	95	70-1		
m&p-Xylenes	%	98	70-1		
o-Xylene	%	93	70-1		
Xylenes - Total*	%	96	70-1		
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	99	70-1	30 Pass	
TRH C6-C10	%	82	70-1		
TRH >C10-C16	%	117	70-1		
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	95	70-1	30 Pass	
Acenaphthylene	%	91	70-1		
Anthracene	%	92	70-1		1
Benz(a)anthracene	%	83	70-1		
Benzo(a)pyrene	%	97	70-1		1
Benzo(b&j)fluoranthene	%	83	70-1		
Benzo(g.h.i)perylene	%	101	70-1		
Benzo(k)fluoranthene	%	98	70-1		1
Chrysene	%	92	70-1		1
Dibenz(a.h)anthracene	%	84	70-1		1
	/0				+
Fluoranthene	%	80	70_1	30 Page	
Fluoranthene Fluorene	%	80 105	70-1		<u> </u>

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Naphthalene			%	87		70-130	Pass	
Phenanthrene			%	84		70-130	Pass	
Pyrene			%	102		70-130	Pass	
LCS - % Recovery								
Organochlorine Pesticides								
Chlordanes - Total			%	79		70-130	Pass	
4.4'-DDD			%	94		70-130	Pass	
4.4'-DDE			%	82		70-130	Pass	
4.4'-DDT			%	75		70-130	Pass	
a-BHC			%	90		70-130	Pass	
Aldrin			%	75		70-130	Pass	
b-BHC			%	110		70-130	Pass	
d-BHC			%	93		70-130	Pass	
Dieldrin			%	93		70-130	Pass	
Endosulfan I			%	110		70-130	Pass	
Endosulfan II			%	86		70-130	Pass	
Endrin			%	107		70-130	Pass	
Endrin aldehyde			%	74		70-130	Pass	
g-BHC (Lindane)			%	115		70-130	Pass	
Heptachlor			%	100		70-130	Pass	
Heptachlor epoxide			%	80		70-130	Pass	
Methoxychlor			%	105		70-130	Pass	
LCS - % Recovery			/0			10100	1 400	
Conductivity (1:5 aqueous extract at	25°C as rec.)		%	85		70-130	Pass	
LCS - % Recovery	20 0 00 100.9		70	00	I I	10 100	1 400	
Heavy Metals								
Arsenic			%	100		80-120	Pass	
Cadmium			%	111		80-120	Pass	
Chromium			%	115		80-120	Pass	
Copper			%	113		80-120	Pass	
Lead			%	116		80-120	Pass	
Mercury			%	120		80-120	Pass	
Nickel			%	111		80-120	Pass	
			%	111		80-120	Pass	
Zinc		0.					Pass	Qualifying
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Limits	Qualifying Code
Spike - % Recovery				Desult 1			[
Total Recoverable Hydrocarbons -			0/	Result 1		70.400	Dese	
TRH C6-C9	S21-My03124	NCP	%	77		70-130	Pass	
TRH C10-C14	S21-My03114	NCP	%	107		70-130	Pass	
Spike - % Recovery				D KA				
BTEX				Result 1				
Benzene	S21-My03124	NCP	%	98		70-130	Pass	
Toluene	S21-My03124	NCP	%	94		70-130	Pass	
Ethylbenzene	S21-My03124	NCP	%	102		70-130	Pass	
m&p-Xylenes	S21-My03124	NCP	%	99		70-130	Pass	
o-Xylene	S21-My03124	NCP	%	98		70-130	Pass	
Xylenes - Total*	S21-My03124	NCP	%	99		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -				Result 1				
Naphthalene	S21-My03124	NCP	%	113		70-130	Pass	
TRH C6-C10	S21-My03124	NCP	%	78		70-130	Pass	
TRH >C10-C16	S21-My03114	NCP	%	107		70-130	Pass	ļ
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbons				Result 1				1

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Acenaphthene	S21-My01268	NCP	%	118			70-130	Pass	
Acenaphthylene	S21-My01268	NCP	%	92			70-130	Pass	
Anthracene	S21-My01268	NCP	%	124			70-130	Pass	
Benz(a)anthracene	S21-My01268	NCP	%	116			70-130	Pass	
Benzo(a)pyrene	S21-My01268	NCP	%	112			70-130	Pass	
Benzo(b&j)fluoranthene	S21-My01268	NCP	%	107			70-130	Pass	
Benzo(g.h.i)perylene	S21-Ap57264	NCP	%	120			70-130	Pass	
Benzo(k)fluoranthene	S21-My01268	NCP	%	111			70-130	Pass	
Chrysene	S21-My13256	NCP	%	75			70-130	Pass	
Dibenz(a.h)anthracene	S21-My01268	NCP	%	94			70-130	Pass	
Fluoranthene	S21-My01268	NCP	%	119			70-130	Pass	
Fluorene	S21-My01268	NCP	%	121			70-130	Pass	
Indeno(1.2.3-cd)pyrene	S21-My01268	NCP	%	87			70-130	Pass	
Naphthalene	S21-My01268	NCP	%	107			70-130	Pass	
Phenanthrene	S21-My01268	NCP	%	125			70-130	Pass	
Pyrene	S21-My01268	NCP	%	123			70-130	Pass	
Spike - % Recovery				1	1		T	1	
Organochlorine Pesticides	1			Result 1					
Chlordanes - Total	S21-My13256	NCP	%	71			70-130	Pass	
4.4'-DDD	S21-My13256	NCP	%	70			70-130	Pass	
4.4'-DDE	S21-My13256	NCP	%	74			70-130	Pass	
4.4'-DDT	S21-My13256	NCP	%	87			70-130	Pass	
a-BHC	S21-My13256	NCP	%	73			70-130	Pass	
Aldrin	S21-My13256	NCP	%	70			70-130	Pass	
b-BHC	S21-My13256	NCP	%	89			70-130	Pass	
d-BHC	S21-Ap57264	NCP	%	86			70-130	Pass	
Dieldrin	S21-My13256	NCP	%	76			70-130	Pass	
Endosulfan I	S21-Ap57264	NCP	%	91			70-130	Pass	
Endosulfan II	S21-My13256	NCP	%	72			70-130	Pass	
Endosulfan sulphate	S21-Ap58043	NCP	%	88			70-130	Pass	
Endrin	S21-My13256	NCP	%	91			70-130	Pass	
Endrin ketone	S21-Ap58043	NCP	%	105			70-130	Pass	
g-BHC (Lindane)	S21-My13256	NCP	%	89			70-130	Pass	
Heptachlor	S21-My13256	NCP	%	114			70-130	Pass	
Heptachlor epoxide	S21-My13256	NCP	%	74			70-130	Pass	
Hexachlorobenzene	S21-My13256	NCP	%	72			70-130	Pass	
Spike - % Recovery				1			T		
Heavy Metals	T			Result 1					
Arsenic	S21-My04571	NCP	%	112			75-125	Pass	
Cadmium	S21-My04571	NCP	%	119			75-125	Pass	
Chromium	S21-My08210	NCP	%	109			75-125	Pass	
Copper	S21-My08210	NCP	%	109			75-125	Pass	
Lead	S21-My08230	NCP	%	91			75-125	Pass	
Mercury	S21-My08210	NCP	%	114			75-125	Pass	
Nickel	S21-My08210	NCP	%	114			75-125	Pass	
Zinc	S21-My04571	NCP	%	124			75-125	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons		1		Result 1	Result 2	RPD			
TRH C6-C9	S21-My08210	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	S21-My03113	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	S21-My03113	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	S21-My03113	NCP	mg/kg	< 50	82	76	30%	Fail	Q15

Duplicate									
BTEX				Result 1	Result 2	RPD			
Benzene	S21-My08210	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	S21-My08210	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	S21-My08210	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	S21-My08210	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	S21-My08210	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	S21-My08210	NCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate					1 010	••	0070	1 400	
Total Recoverable Hydrocarbon	s - 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
Naphthalene	S21-My08210	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	S21-My08210	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH >C10-C16	S21-My03113	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	S21-My03113	NCP	mg/kg	< 100	110	70	30%	Fail	Q15
TRH >C34-C40	S21-My03113	NCP	mg/kg	< 100	100	68	30%	Fail	Q15
Duplicate									
Polycyclic Aromatic Hydrocarbo	ons			Result 1	Result 2	RPD			
Acenaphthene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	S21-My04379	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate		1101	mg/ng	0.0	v 0.0	1	0070	1 400	
Organochlorine Pesticides				Result 1	Result 2	RPD			
Chlordanes - Total	S21-My04379	NCP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
4.4'-DDD	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
a-BHC	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
b-BHC	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
d-BHC	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Dieldrin	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan sulphate	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin aldehyde	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin ketone		NCP					30%		
g-BHC (Lindane)	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
_	S21-My04379		mg/kg	< 0.05	< 0.05	<1		Pass	
Heptachlor	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor epoxide	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	S21-My04379	NCP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	S21-My04379	NCP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
				Result 1	Result 2	RPD			
Conductivity (1:5 aqueous extract at 25°C as rec.)	S21-My04154	СР	uS/cm	32	27	17	30%	Pass	
pH (1:5 Aqueous extract at 25°C as rec.)	S21-My04154	СР	pH Units	6.2	6.2	<1	30%	Pass	
% Moisture	S21-My04180	NCP	%	23	21	7.0	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-My04182	NCP	mg/kg	9.3	11	18	30%	Pass	
Cadmium	S21-My04182	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	S21-My04182	NCP	mg/kg	26	23	11	30%	Pass	
Copper	S21-My04182	NCP	mg/kg	38	29	27	30%	Pass	
Lead	S21-My04182	NCP	mg/kg	79	94	18	30%	Pass	
Mercury	S21-My04182	NCP	mg/kg	0.2	0.2	10	30%	Pass	
Nickel	S21-My04182	NCP	mg/kg	17	13	24	30%	Pass	
Zinc	S21-My04182	NCP	mg/kg	120	97	25	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Andrew Black Andrew Sullivan Charl Du Preez John Nguyen

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager

Senior Analyst-Organic (NSW)

Senior Analyst-Inorganic (NSW) Senior Analyst-Metal (NSW)

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Qualtest 2 Murray Dwyer Circuit Mayfield West NSW 2304 AC-MRA

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection and proficiency testing scheme providers reports.

Attention:

Emma Coleman

Report Project name Project ID Received Date 792281-W MCCLOY GROUP THORNTON NEW17P-0074 May 03, 2021

Client Sample ID			DAM1	D3.5.21
Sample Matrix			Water	Water
Eurofins Sample No.			S21-My04152	S21-My04153
Date Sampled			May 03, 2021	May 03, 2021
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM				
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	< 0.1
BTEX				
Benzene	0.001	mg/L	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	107	109
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions			
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1) ^{N04}	0.02	mg/L	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	< 0.1
Polycyclic Aromatic Hydrocarbons				
Acenaphthene	0.001	mg/L	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.005
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.005
Benzo(b&j)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.005
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.005
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.005
Chrysene	0.001	mg/L	< 0.001	< 0.005
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.005
Fluoranthene	0.001	mg/L	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001

Client Sample ID Sample Matrix			DAM1 Water	D3.5.21 Water
Eurofins Sample No.			S21-My04152	S21-My04153
Date Sampled			May 03, 2021	May 03, 2021
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.005
Naphthalene	0.001	mg/L	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.005
2-Fluorobiphenyl (surr.)	1	%	61	95
p-Terphenyl-d14 (surr.)	1	%	62	INT
Organochlorine Pesticides				
Chlordanes - Total	0.002	mg/L	< 0.002	-
4.4'-DDD	0.0001	mg/L	< 0.0001	-
4.4'-DDE	0.0001	mg/L	< 0.0001	-
4.4'-DDT	0.0001	mg/L	< 0.0001	-
a-BHC	0.0001	mg/L	< 0.0001	-
Aldrin	0.0001	mg/L	< 0.0001	-
b-BHC	0.0001	mg/L	< 0.0001	-
d-BHC	0.0001	mg/L	< 0.0001	-
Dieldrin	0.0001	mg/L	< 0.0001	-
Endosulfan I	0.0001	mg/L	< 0.0001	-
Endosulfan II	0.0001	mg/L	< 0.0001	-
Endosulfan sulphate	0.0001	mg/L	< 0.0001	-
Endrin	0.0001	mg/L	< 0.0001	-
Endrin aldehyde	0.0001	mg/L	< 0.0001	-
Endrin ketone	0.0001	mg/L	< 0.0001	-
g-BHC (Lindane)	0.0001	mg/L	< 0.0001	-
Heptachlor	0.0001	mg/L	< 0.0001	-
Heptachlor epoxide	0.0001	mg/L	< 0.0001	-
Hexachlorobenzene	0.0001	mg/L	< 0.0001	-
Methoxychlor	0.0002	mg/L	< 0.0002	-
Toxaphene	0.001	mg/L	< 0.001	-
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	-
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	-
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	-
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	-
Dibutylchlorendate (surr.)	1	%	INT	-
Tetrachloro-m-xylene (surr.)	1	%	61	-
Conductivity (at 25°C)	10	uS/cm	230	130
pH (at 25 °C)	0.1	pH Units	6.8	6.7
Total Suspended Solids Dried at 103–105°C	5	mg/L	12	-
Heavy Metals				
Arsenic	0.001	mg/L	0.005	0.006
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002
Chromium	0.001	mg/L	0.003	0.003
Copper	0.001	mg/L	0.003	0.003
Lead	0.001	mg/L	0.005	0.004
Mercury	0.0001	mg/L	< 0.0001	< 0.0001
Nickel	0.001	mg/L	0.002	0.003
Zinc	0.005	mg/L	0.026	0.023

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Sydney	May 04, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Sydney	May 04, 2021	14 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 04, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Sydney	May 04, 2021	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Sydney	May 04, 2021	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Metals M8	Sydney	May 10, 2021	180 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Sydney	May 04, 2021	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water			
Conductivity (at 25°C)	Sydney	May 05, 2021	28 Days
- Method: LTM-INO-4030 Conductivity			
pH (at 25 °C)	Sydney	May 05, 2021	1 Days
- Method: LTM-GEN-7090 pH in water by ISE			
Total Suspended Solids Dried at 103–105°C	Sydney	May 05, 2021	7 Days
- Method: LTM-INO-4070 Analysis of Suspended Solids in Water by Gravimetry			

🔅 eurofi	ns			Australia											New Zealand	
		ironment	Testing	Melbourne 6 Monterey Road Dandenong South VIC 3 Phone : +61 3 8564 500 NATA # 1261	U 8175 1 0 La	ydney Init F3, I 6 Mars ane Cov Phone : -	Road /e West	NSW 2	1/ M 2066 P	/lurarrie Phone : ·	allwood QLD 41 +61 7 39		Perth 46-48 Banksia Road Welshpool WA 6106 Phone : +61 8 9251 9600 4 NATA # 1261	Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone : +61 2 4968 8448	Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone : +64 9 526 45 51 IANZ # 1327	Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Phone : 0800 856 450 IANZ # 1290
ABN: 50 005 085 521 web:	www.eurofins.com.au	email: EnviroSale	s@eurofins.com	Site # 1254 & 14271		IATA #					1201 01	0 // 2010	Site # 23736	NATA # 1261 Site # 25079		
Company Name: Address:	Qualtest 2 Murray Dw Mayfield We NSW 2304	•				R	rder N eport hone: ax:	#:	(31 68 446 60 977			Received: Due: Priority: Contact Name:	May 3, 2021 3:00 F May 10, 2021 5 Day Emma Coleman	PM
Project Name: Project ID:	MCCLOY GI NEW17P-00	ROUP THORN 74	ITON											Eurofins Analytical S	ervices Manager : Ar	ndrew Black
	Sa	mple Detail			Conductivity (1:5 aqueous extract at 25°C as rec.)	Conductivity (at 25°C)	pH (1:5 Aqueous extract at 25°C as rec.)	pH (at 25 °C)	Total Suspended Solids Dried at 103–105°C	Organochlorine Pesticides	Moisture Set	Eurofins Suite B7				
Melbourne Laborat			71								<u> </u>					
Sydney Laboratory Brisbane Laborator					X	X	X	X	X	X	X	X				
Perth Laboratory -	•								+	+	+					
Mayfield Laboratory									1	1	1					
External Laboratory																
No Sample ID	Sample Date	Sampling Time	Matrix	LAB ID												
1 DAM1	May 03, 2021		Water	S21-My04152		Х		Х	Х	Х	\perp	Х				
2 D3.5.21	May 03, 2021		Water	S21-My04153		X		X	\vdash	–	—	X				
3 DAM1 SD	May 03, 2021		Sediment	S21-My04154	X		Х		\square	Х	X	Х				
Test Counts					1	2	1	2	1	2	1	3				

Internal Quality Control Review and Glossary

General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site 1. Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- This report replaces any interim results previously issued. 9.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days. **NOTE: pH duplicates are reported as a range NOT as RPD

Units

mg/kg: milligrams per kilogram	mg/L: milligrams per litre	ug/L: micrograms per litre
ppm: Parts per million	ppb: Parts per billion	%: Percentage
org/100mL: Organisms per 100 millilitres	NTU: Nephelometric Turbidity Units	MPN/100mL: Most Probable Number of organisms per 100 millilitres

Where a moisture has been determined on a solid sample the result is expressed on a dry basis.
Limit of Reporting.
Addition of the analyte to the sample and reported as percentage recovery.
Relative Percent Difference between two Duplicate pieces of analysis.
Laboratory Control Sample - reported as percent recovery.
Certified Reference Material - reported as percent recovery.
In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.
The addition of a like compound to the analyte target and reported as percentage recovery.
A second piece of analysis from the same sample and reported in the same units as the result to show comparison.
United States Environmental Protection Agency
American Public Health Association
Toxicity Characteristic Leaching Procedure
Chain of Custody
Sample Receipt Advice
US Department of Defense Quality Systems Manual Version 5.3
Client Parent - QC was performed on samples pertaining to this report
Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.
Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported 5. in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/L	< 0.02	0.02	Pass	
TRH C15-C28	mg/L	< 0.1	0.1	Pass	
TRH C29-C36	mg/L	< 0.1	0.1	Pass	
Method Blank					
BTEX					
Benzene	mg/L	< 0.001	0.001	Pass	
Toluene	mg/L	< 0.001	0.001	Pass	
Ethylbenzene	mg/L	< 0.001	0.001	Pass	
m&p-Xylenes	mg/L	< 0.002	0.002	Pass	
o-Xylene	mg/L	< 0.001	0.001	Pass	
Xylenes - Total*	mg/L	< 0.003	0.003	Pass	
Method Blank			• • •	•	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/L	< 0.01	0.01	Pass	
TRH C6-C10	mg/L	< 0.02	0.02	Pass	
TRH >C16-C34	mg/L	< 0.1	0.1	Pass	
TRH >C34-C40	mg/L	< 0.1	0.1	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/L	< 0.001	0.001	Pass	
Acenaphthylene	mg/L	< 0.001	0.001	Pass	
Anthracene	mg/L	< 0.001	0.001	Pass	
Benz(a)anthracene	mg/L	< 0.001	0.001	Pass	
Benzo(a)pyrene	mg/L	< 0.001	0.001	Pass	
Benzo(b&j)fluoranthene	mg/L	< 0.001	0.001	Pass	
Benzo(g.h.i)perylene	mg/L	< 0.001	0.001	Pass	
Benzo(k)fluoranthene	mg/L	< 0.001	0.001	Pass	
Chrysene	mg/L	< 0.001	0.001	Pass	
Dibenz(a.h)anthracene	mg/L	< 0.001	0.001	Pass	
Fluoranthene	mg/L	< 0.001	0.001	Pass	
Fluorene	mg/L	< 0.001	0.001	Pass	
Indeno(1.2.3-cd)pyrene	mg/L	< 0.001	0.001	Pass	
Naphthalene	mg/L	< 0.001	0.001	Pass	
Phenanthrene	mg/L	< 0.001	0.001	Pass	
Pyrene	mg/L	< 0.001	0.001	Pass	
Method Blank	ing/L	<u> </u>	0.001	1 400	
Organochlorine Pesticides				1	
Chlordanes - Total	mg/L	< 0.002	0.002	Pass	
4.4'-DDD	mg/L	< 0.0002	0.002	Pass	
4.4-50D	mg/L	< 0.0001	0.0001	Pass	
4.4-DDT	mg/L	< 0.0001	0.0001	Pass	
a-BHC	mg/L	< 0.0001	0.0001	Pass	
Aldrin	mg/L	< 0.0001	0.0001	Pass	
b-BHC	mg/L	< 0.0001	0.0001	Pass	
d-BHC	mg/L	< 0.0001	0.0001	Pass	
Dieldrin		< 0.0001	0.0001	Pass	
	mg/L				
Endosulfan I	mg/L	< 0.0001	0.0001	Pass	
Endosulfan II	mg/L	< 0.0001	0.0001	Pass	
Endosulfan sulphate	mg/L	< 0.0001	0.0001	Pass	
Endrin	mg/L	< 0.0001	0.0001	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Endrin aldehyde	mg/L	< 0.0001	0.0001	Pass	
Endrin ketone	mg/L	< 0.0001	0.0001	Pass	
g-BHC (Lindane)	mg/L	< 0.0001	0.0001	Pass	
Heptachlor	mg/L	< 0.0001	0.0001	Pass	
Heptachlor epoxide	mg/L	< 0.0001	0.0001	Pass	
Hexachlorobenzene	mg/L	< 0.0001	0.0001	Pass	
Methoxychlor	mg/L	< 0.0002	0.0002	Pass	
Toxaphene	mg/L	< 0.001	0.001	Pass	
Method Blank			· ·	•	
Conductivity (at 25°C)	uS/cm	< 10	10	Pass	
Total Suspended Solids Dried at 103–105°C	mg/L	< 5	5	Pass	
Method Blank		<u> </u>			
Heavy Metals					
Arsenic	mg/L	< 0.001	0.001	Pass	
Cadmium	mg/L	< 0.0002	0.0002	Pass	
Chromium	mg/L	< 0.001	0.001	Pass	
Copper	mg/L	< 0.001	0.001	Pass	
Lead	mg/L	< 0.001	0.001	Pass	
Mercury	mg/L	< 0.0001	0.0001	Pass	
Nickel	mg/L	< 0.001	0.001	Pass	
Zinc		< 0.001	0.001	Pass	
	mg/L	< 0.005	0.003	F 455	
LCS - % Recovery				1	
Total Recoverable Hydrocarbons - 1999 NEPM Fraction		100	70.100	Dese	
TRH C6-C9	%	103	70-130	Pass	
TRH C10-C14	%	70	70-130	Pass	
LCS - % Recovery				1	
BTEX		440		-	
Benzene	%	112	70-130	Pass	
	%	107	70-130	Pass	
Ethylbenzene	%	109	70-130	Pass	
m&p-Xylenes	%	119	70-130	Pass	
o-Xylene	%	112	70-130	Pass	
Xylenes - Total*	%	117	70-130	Pass	
LCS - % Recovery		I I			
Total Recoverable Hydrocarbons - 2013 NEPM Fraction					
Naphthalene	%	113	70-130	Pass	
TRH C6-C10	%	105	70-130	Pass	
TRH >C10-C16	%	72	70-130	Pass	
LCS - % Recovery		Г Г		1	
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	71	70-130	Pass	
Acenaphthylene	%	75	70-130	Pass	
Anthracene	%	80	70-130	Pass	
Benz(a)anthracene	%	87	70-130	Pass	
Benzo(a)pyrene	%	88	70-130	Pass	
Benzo(b&j)fluoranthene	%	92	70-130	Pass	
Benzo(g.h.i)perylene	%	76	70-130	Pass	
Benzo(k)fluoranthene	%	103	70-130	Pass	
Chrysene	%	87	70-130	Pass	
Dibenz(a.h)anthracene	%	85	70-130	Pass	
Fluoranthene	%	84	70-130	Pass	
Fluorene	%	73	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	72	70-130	Pass	
Naphthalene	%	81	70-130	Pass	

Test			Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Phenanthrene	henanthrene			73	70-130	Pass	
Pyrene	Pyrene			85	70-130	Pass	
LCS - % Recovery				1			
Organochlorine Pesticides							
Chlordanes - Total			%	101	70-130	Pass	
4.4'-DDD			%	102	70-130	Pass	
4.4'-DDE			%	93	70-130	Pass	
4.4'-DDT			%	121	70-130	Pass	
a-BHC			%	95	70-130	Pass	
Aldrin			%	91	70-130	Pass	
b-BHC			%	100	70-130	Pass	
d-BHC			%	97	70-130	Pass	
Dieldrin			%	96	70-130	Pass	
Endosulfan I			%	100	70-130	Pass	
Endosulfan II			%	96	70-130	Pass	
Endosulfan sulphate			%	105	70-130	Pass	
Endrin aldehyde			%	129	70-130	Pass	
Endrin ketone			%	113	70-130	Pass	
g-BHC (Lindane)			%	103	70-130	Pass	
Heptachlor			%	130	70-130	Pass	
Heptachlor epoxide			%	104	70-130	Pass	
Hexachlorobenzene			%	88	70-130	Pass	
Methoxychlor			%	128	70-130	Pass	
LCS - % Recovery							
Conductivity (at 25°C)			%	102	70-130	Pass	
Total Suspended Solids Dried at 10	3–105°C		%	89	70-130	Pass	
LCS - % Recovery					 		
Heavy Metals							
Arsenic			%	104	80-120	Pass	
Cadmium			%	100	80-120	Pass	
Chromium			%	88	80-120	Pass	
Copper			%	88	80-120	Pass	
Lead			%	90	80-120	Pass	
Mercury			%	92	80-120	Pass	
Nickel			%	89	80-120	Pass	
Zinc			%	94	80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery							
				Result 1			
Total Suspended Solids Dried at 103–105°C	S21-My11902	NCP	%	85	70-130	Pass	
Spike - % Recovery							
Heavy Metals				Result 1			
Arsenic	S21-My08075	NCP	%	107	75-125	Pass	
Chromium	S21-My08075	NCP	%	94	75-125	Pass	
Copper	S21-My08075	NCP	%	90	75-125	Pass	
Lead	S21-My08075	NCP	%	86	75-125	Pass	
Mercury	S21-My08075	NCP	%	90	75-125	Pass	
Nickel	S21-My08075	NCP	%	94	75-125	Pass	
Zinc	S21-My08075	NCP	%	91	75-125	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH C10-C14	S21-Ap57930	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH C15-C28	S21-Ap57930	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH C29-C36	S21-Ap57930	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	tions		Result 1	Result 2	RPD			
TRH >C10-C16	S21-Ap57930	NCP	mg/L	< 0.05	< 0.05	<1	30%	Pass	
TRH >C16-C34	S21-Ap57930	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
TRH >C34-C40	S21-Ap57930	NCP	mg/L	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
		-		Result 1	Result 2	RPD			
Conductivity (at 25°C)	S21-My01628	NCP	uS/cm	310	280	10	30%	Pass	
Total Suspended Solids Dried at 103–105°C	S21-My11902	NCP	mg/L	8.8	8.6	2.0	30%	Pass	
Duplicate								_	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	S21-My08074	NCP	mg/L	0.003	0.003	3.0	30%	Pass	
Cadmium	S21-My08074	NCP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	S21-My08074	NCP	mg/L	0.027	0.026	3.0	30%	Pass	
Copper	S21-My08074	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	S21-My08074	NCP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Mercury	S21-My08074	NCP	mg/L	< 0.0001	< 0.0001	<1	30%	Pass	
Nickel	S21-My08074	NCP	mg/L	0.002	0.001	65	30%	Fail	Q15
Zinc	S21-My08074	NCP	mg/L	0.030	0.028	6.0	30%	Pass	

Comments

Sample Integrity	
Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Qualifier Codes/Comments

Code Description

N01	F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).
N02	Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.
N04	F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes.
N07	Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs
Q15	The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

Authorised by:

Andrew Black Andrew Sullivan Charl Du Preez John Nguyen

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Analytical Services Manager

Senior Analyst-Metal (NSW)

Senior Analyst-Organic (NSW)

Senior Analyst-Inorganic (NSW)

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.